Numerical ranges and compressions of S_n-matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Krein Space Numerical Ranges: Compressions and Dilations

A criterion for the numerical range of a linear operator acting in a Krein space to be a two-component hyperbolical disc is given, using the concept of support function. A characterization of the Krein space numerical range as a union of hyperbolical discs is obtained by a reduction to the two-dimensional case. We revisit a famous result of Ando concerning the inclusion relation W (A) ⊆ W (B) o...

متن کامل

Properties of matrices with numerical ranges in a sector

Let $(A)$ be a complex $(ntimes n)$ matrix and assume that the numerical range of $(A)$ lies in the set of a sector of half angle $(alpha)$ denoted by $(S_{alpha})$. We prove the numerical ranges of the conjugate, inverse and Schur complement of any order of $(A)$ are in the same $(S_{alpha})$.The eigenvalues of some kinds of matrix product and numerical ranges of hadmard product, star-congruen...

متن کامل

Hermitian octonion matrices and numerical ranges

Notions of numerical ranges and joint numerical ranges of octonion matrices are introduced. Various properties of hermitian octonion matrices related to eigenvalues and convex cones, such as the convex cone of positive semidefinite matrices, are described. As an application, convexity of joint numerical ranges of 2×2 hermitian matrices is characterized. Another application involves existence of...

متن کامل

Ela Hermitian Octonion Matrices and Numerical Ranges

Notions of numerical ranges and joint numerical ranges of octonion matrices are introduced. Various properties of hermitian octonion matrices related to eigenvalues and convex cones, such as the convex cone of positive semidefinite matrices, are described. As an application, convexity of joint numerical ranges of 2×2 hermitian matrices is characterized. Another application involves existence of...

متن کامل

Higher Rank Numerical Ranges of Normal Matrices

The higher rank numerical range is closely connected to the construction of quantum error correction code for a noisy quantum channel. It is known that if a normal matrix A ∈ Mn has eigenvalues a1, . . . , an, then its higher rank numerical range Λk(A) is the intersection of convex polygons with vertices aj1 , . . . , ajn−k+1 , where 1 ≤ j1 < · · · < jn−k+1 ≤ n. In this paper, it is shown that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operators and Matrices

سال: 2013

ISSN: 1846-3886

DOI: 10.7153/oam-07-28